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1 ICR-based Kinematics of Skid-Steering Robots

1.1 Notations

In this technique report, we consider a robotic platform navigating with respect to a global reference frame,
{G}. The platform is equipped with a camera, an IMU, and wheel odometers, whose frames are denoted
by {C}, {I}, {O} respectively. To present transformation, we use ApB and A

BR to denote position and
rotation of frame {B} with respect to {A}. We use x̂ and δx to represent the current estimated value and
error state for variable x. Furthermore, we reserve the symbol x̆ to denote the inferred measurement mean
value of x throughout this technique report.

1.2 Kinematics of Skid-steering Robot

In this work, we employ the ICR parameters [1] to approximately model the kinematics of a skid-steering
robot. Specifically, as shown in Fig. 1, we denote ICRv = (Xv, Yv) the ICR position of the robot frame,
and ICRl = (Xl, Yl) and ICRr = (Xr, Yr) the ones of the left and right wheels, respectively. The relation
between the readings of wheel odometer measurements and the ICR parameters can be derived as follows:

Yl = −ol −
Ovx

Oωz
, Yr = −or −

Ovx
Oωz

Yv =
Ovx
Oωz

, Xv = Xl = Xr = −
Ovy
Oωz

(1)

where Ov = [Ovx,
Ovy,

Ovz]
> is the robot’s 3D linear velocity in local odometry frame, and Oωz denotes

the angular velocity along the robot’s z axis, which is the abbreviation of Oωz . From Eq. 1, the kinematic
models of the skid-steering robot can be expressed as:Ovx

Ovy
Oωz

 =
1

∆Y

−Yr Yl
Xv −Xv

−1 1

[ol
or

]
(2)

where ∆Y = Yl − Yr. We can see that after the linear velocities of left and right wheels ol, or are know, the
motion of the robot can be determined by the 3 ICR parameters [Xv, Yl, Yr].

Moreover, we introduce two additional scale factors, [αl, αr], to compensate for the possible effects,
e.g., due to tire inflation and interface roughness. With the scale factors and Eq. 1, we can express the
motion variables as:

Ovx
Ovy
Oωz

 = g(ξ, ol, or) =
1

∆Y

−Yr Yl
Xv −Xv

−1 1

[αl 0
0 αr

][
ol
or

]
, ξ =


Xv

Yl
Yr
αl
αr

 (3)

where ∆Y = Yl − Yr, and ξ is the entire set of kinematic parameters.
Interestingly, as a special configuration when ξ = [0, b2 ,

−b
2 , 1, 1]T , with b being the distance between

left and right wheels, Eq. 3 can be simplified as:

Ovx =
ol + or

2
, Oωz =

or − ol
b

, Ovy = 0 (4)
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This is the kinematic model for a wheeled robot moving without slippage (e.g., a differential drive robot), and
used by most existing work for localizing wheeled robots [2, 3]. However, in the case of skid-steering robots
under consideration, if directly applying Eq. 4, the localization accuracy would be significantly degraded.
It is important to point out that as ξ cannot remain constant due to different motions and terrains [1, 4], we
will perform online “calibration” to estimate these kinematic parameters along with the navigation states as
in [5–7].
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Figure 1: The odometer measurements and the instantaneous center of rotation (ICR) of a skid-steering robot on the ground plane.

2 Kinematics-Constrained Visual-Inertial Localization

We develop a window-BA estimator for the proposed kinematics-constrained visual-inertial localization for
a skid-steering robot equipped with a camera, an IMU, and wheel encoders. For simplicity, although not
necessary, we assume known extrinsic transformations between sensors. At each time step, we optimize the
following window of states, whose typically oldest state will be marginalized out when moving to the next
window in order to bound computational cost:

x = {GOT ,GvIk ,ba,bω, ξ,F ,m} (5)

In the above expression, G
OT = {GOk−s

T, . . . ,GOk−1
T,GOk

T} denotes the cloned poses in the sliding window

at time {k−s, . . . , k}. G
Ok

T =
{

G
Ok

R,GpOk

}
represents the 6DOF pose of the robot at time k. We choose

the odometry frame is the base sensor frame and the system is initialized by the initial position of odometer
while the direction of z is aligned with the gravity. F contains all the 3D global positions of visual features.
GvIk ,ba,bω are the IMU velocity in global frame, acceleration bias and angular velocity bias, respectively.
Note that we estimate online the ICR kinematic parameters ξ and thus include them in the state as well.
Lastly, m denotes the parameters related to the motion manifold constraints enforcing local smooth ground
planar motion. As illustrated in Fig. 2, the sliding window BA is our estimation engine whose cost function
includes the following constraints:

C = Cprior + Cproj + CI + CO + Cmanifold (6)

which includes the prior of the states remaining in the current sliding window after marginalization [8], the
projection error of visual features, the IMU integration constraints [7, 14], the odometery-induced kinematic
constraints, and the motion manifold constraints.

In particular, the prior factor related with the remaining states xr in current sliding window is associated
with the measurements incident to the marginalized states

Cprior(xr) =
1

2

∣∣∣∣xr � x̂r
∣∣∣∣2

Λmarg
+ g>marg (xr � x̂r) (7)
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Figure 2: In the proposed kinematics-constrained visual-inertial localization for skid-steering robots, five different constraints are
used in the sliding-window BA: A prior encapsulates the information about the current states due to marginalization of states and
measurements; Visual feature measurements connect the feature points in the map and the robot pose at the time when the image
was recorded; IMU integration factor summarizes the sequential IMU raw measurements between the two images (keyframes);
Odometry-induced kinematic factor summaries the sequential odometer measurements between the two images; Motion manifold
constraints enforce local smooth planar motions. Note that the IMU fator and the Odometry-induced kinematic factor only existing
in the newest keyframe and the second newest keyframe.

where x̂r is the current state estimate at the time of marginalization, and Λmarg and gmarg are the marginal-
ized Hessian and gradient [8], respectively. The boxminus � denotes the generalized minus operation, since
we need perform computations operate on manifold.

2.1 Image Processing

Keyframe policy are used in our framework for computational saving. Only some keyframes will be opti-
mized in the back-end. Whereas, the non-keyframe will be dropped immediately without any extra opera-
tions unlike existing method [9, 10] which also need to extract features and analyses the features distribution
for keyframe selection. Once a new image is coming, we use the odometer pose prediction ( see Sec. 2.4)
for keyframe selections. We use a simple heuristic for keyframe selection: the odometer prediction has
a translation or rotation over a certain threshold (in all the experiments, 0.2 meter and 3 degrees are the
criteria).

Corner feature points are extracted in a fast way [11] and tacked by KLT optical flow algorithm [12]. The
tracked features are further checked by a RANSAC scheme with a fundamental matrix model [13]. For a
3D feature Gpfj ∈ F in the global frame has an observation zi,j in Cith camera keyframe, the reprojection
error is

Cproj(G
Oi

R,GpOi ,
Gpfj) =

∣∣∣∣zi,j − π(G
Ci

R,GpCi ,
Gpfj)

∣∣∣∣2
Λproj

(8)
G
Ci

R = G
Oi

RG
CR, GpCi = GpOi + G

Oi
ROpC

. In the above expression, π(·) denote the projection function, and Λproj represent the inverse covariance of
the observation zi,j .

2.2 IMU Prediction

The raw measurements of IMU is the acceleration and angular velocity measurements in local IMU frame.:

ωm = ωI + bω + nω (9a)

am = aI + I
GRGg + ba + na (9b)
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where Gg is the global gravity, and the raw measurements are deteriorated by the time-varying bias bω,ba,
and white noises nω,na. We predict the pose at current key frame time t(k) by intermediate sequential
IMU measurements i0, i1, . . . , im ∈ Im between t(k − 1) and t(k). The integration of IMU are omitted
here due to limited spaces, and please refer to [7, 14] for details. After integrating all the intermediate IMU
measurements, we obtain the state prediction x̂Ik =

[
Gp̂Ok

,GOk
R̂,Gv̂Ik , b̂a, b̂ω

]
= f(x̂Ik−1

, Im) at time

tk, where b̂a, and b̂ω do not evolve between two keyframes. We can write the IMU constraints here:

CI(GpOk
,GOk

R,GpOk−1
,GOk−1

R,GvIk ,ba,bω) =
∣∣∣∣x̂Ik � xIk

∣∣∣∣2
ΛIMU

(10)

2.3 Motion Manifold Constraints

The manifold constraints includes two parts related to the position and rotation of the robot respectively.
Firstly, as the skid-steer robot navigates on ground surface, the positions GpO during a period of time can
be approximated by the quadratic polynomial [15] (in our implementation, this holds in the whole sliding
window):

Mp(
GpO) =

1

2

[
GpOx
GpOy

]>
A

[
GpOx
GpOy

]
+ B>

[
GpOx
GpOy

]
+ GpOz + c (11)

where

A =

[
a1 a2

a2 a3

]
,B =

[
b1
b2

]
(12)

. The manifold parameters are
m = [a1, a2, a3, b1, b2, c]

>

. And all the robot position insides the sliding window should satisfy Eq. 11 .
In addition, the rotations of the robot GRo should satisfy the following constraints

Mr(
G
OR,GpO) =

∣∣∣∣bGORe3c12 ∗
∂Mp

∂GpO

∣∣∣∣2
Λmr

(13)

bvc12 denotes the first and second rows of the symmetric matrix of the 3D vector v. The above expression
ensures the fact that the roll and pitch of the ground robot should be consistent with the normal vector of the
motion manifold (ground surface). In general, the motion manifold constraints, related with all the poses
inside the sliding window, are

Cmanifold(G
OT ,m) =

k∑
i=k−s

∣∣∣∣Mp(
GpOi)

∣∣∣∣2
Λmp

+Mr(
G
Oi

R,GpOi) (14)

2.4 ICR-based Kinematic Constraints

We now derive the ICR-based kinematic constraints based on the wheel encoders’ measurements of the
skid-steering robot. Specifically, by assuming the supporting manifold of the robot is locally planar between
tk−1 and tk, the local linear and angular velocities, O(t)v and O(t)ω, are a function of the wheel encoders’
measurements of the left and right wheels olm(t) and orm(t) as well as the ICR kinematic parameters ξ [see
(3)]: [

O(t)vT ,O(t)ω
T
]>

= Π g(ξ(t), ol(t), or(t))

= Π g(ξ(t), olm(t)− nl(t), orm(t)− nr(t)) (15)
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where Π =
[
eT1 eT2 0 0 0 eT3

]T
is the selection matrix with ei being a 3 × 1 unit vector with the

ith element of 1, olm(t) and orm(t) are odometer readings of left and right wheels, respectively, nl(t) and
nr(t) are the odometry noise modeled as zero-mean white Gaussian. Once the instantaneous local velocities
of the robot are available, with the initial conditions Ok−1

O(t) R
∣∣
t=tk−1

= I3×3 and Ok−1pO(t)

∣∣
t=tk−1

= 03×1,
we can integrate the following differential equations in the time interval t ∈ [tk−1, tk]:

Ok−1

O(t) Ṙ =
Ok−1

O(t) R · bO(t)ωc
Ok−1ṗO(t) = Ok−1vO(t) =

Ok−1

O(t) R · O(t)v (16)

This integration will result in the relative pose {Ok−1pOk
,
Ok−1

Ok
R}, which is then used to propagate the

global pose from tk to tk+1:

GpOk
= GpOk−1

+ G
Ok−1

R · Ok−1pOk
(17)

G
Ok

R = G
Ok−1

R · Ok−1

Ok
R (18)

where Ok−1pOk
and Ok−1

Ok
R represents the relative motion between timestamps. Additionally, we model the

ICR kinematic parameter ξ as a random walk to capture its time-varying characteristics:

ξ̇(t) = nξ(t) (19)

where nξ is zero-mean white Gaussian noise.
Based on the ICR-based kinematic model (17) and (19), we predict the pose and kinematic parame-

ter at the newest keyframe time tk, x̂Ok =
[
G
Ok

R̂,Gp̂Ok
, ξ̂
]

= f(x̂Ok ,Om), by integrating all the in-
termediate odometery measurements o0,o1, . . . ,om ∈ Om specially, t(0) = t(k − 1), t(m) = t(k).
And the raw measurements of wheel odometry are the linear velocities of left and right wheels, such as
o0 = [olm0, orm0]> ∈ R2×1. As a result, the odometer-induced kinematic constraint can be generically
written in the following form:

CO(GpOk
,GOk

R,GpOk−1
,GOk−1

R, ξ) =
∣∣∣∣x̂Ok � xOk

∣∣∣∣2
Λodom

(20)

where Λodom represents the inverse covariance (information) obtained via covariance propagation.
Here we illustrate the odometer integration in detail. If we use midpoint method for numerical inte-

gration to compute GpOk
,GOk

R in Eq. 17 by Om. Starting from t(0), the pose prediction at t(1), can be
obtained from the integration in the midpoint method:

GpO1 = GpO0 + G
O0

RO0pO1 ,
O0pO1 =

1

2
∆t
(

O0v + O0
O1

RO1v
)

(21a)

G
O1

R = G
O0

RO0
O1

R, O0
O1

R = exp{ω̄∆t}, ω̄ =
[
0 0

O0ωz+O1ωz
2

]>
(21b)

In the above expressions, the linear velocities O0v,O1v and the angular velocities O0ωz,
O1ωz at time

t(0), t(1) can be computed from the raw measurement of wheel odometry o0,o1 by the ICR model in
Eq. 3. Note that the vertical linear velocity O0v,O1v remains zero here.

Besides the poses, the 5 ICR parameters including locations ICR = [Xv, Yl, Yr]
> and correction factor

α = [αl, αr]
> are also propagated in this step. ICR and α are affected by random walk noise as shown

in Eq. 19. So the mean value of the propagated ICR, α will remain still. In general, the state x0 =[
GpO0 ,

G
O0

R,O0ICR,O0α
]>

at time t(0) will be propagated to x1 =
[
GpO1 ,

G
O1

R, o1ICR, o1α
]>

by
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odometry measurements in this propagation. We will derive the close-form error state transition matrix 1
0Φ

in this step.

1
0Φ =


I3×3 −G

O0
RbO0pO1c ΦA ΦB

03×3
O0
O1

R> ΦC ΦD

03×3 03×3 I3×3 03×2

02×3 02×3 02×3 I2×2

 (22)

The block matrix ΦA,ΦB,ΦC ,ΦD can be computed by taking the derivative of Eq. 21 with respect to
O0ICR and O0α. We omit some superscripts and subscripts for concise expression, which will not cause
confusion.

ΦA =
∂GδpO1

∂δICR
=

∆t

2
G
O0

R ∗ {Mv0 + O0
O1

RMv1 − O0
O1

RbvO1cJrMω} (23)

Among the above expression,

Mv0 =
1

∆Y 2

[
0 Yr −Yl

∆Y −Xv Xv
0 0 0

]
∗ (αlolm0 − αrorm0) (24)

Mv1 =
1

∆Y 2

[
0 Yr −Yl

∆Y −Xv Xv
0 0 0

]
∗ (αlolm1 − αrorm1) (25)

Mω =
1

∆Y 2

[
0 0 0
0 0 0

0
αl(olm0+olm1)−αr(orm0+orm1)

2
−αl(olm0+olm1)−αr(orm0+orm1)

2

]
(26)

Jr is the abbreviation of Jr (ω̄∆t), denoting the right Jacobian of ω̄∆t. If θ = θa, the following holds:

Jr (θ) = sin θ
θ I +

(
1− sin θ

θ

)
aa> − 1−cos θ

θ bac (27)

ΦB =
∂GδpO1

∂δα
=

∆t

2
G
O0

R ∗ {Nv0 + O0
O1

RNv1 − O0
O1

RbvO1cJrNω} (28)

Nv0 =
1

∆Y

−Yrolm0 Ylorm0

Xvolm0 −Xvorm0

0 0

 (29)

Nv1 =
1

∆Y

−Yrolm1 Ylorm1

Xvolm1 −Xvorm1

0 0

 (30)

Nω =
1

∆Y

 0 0
0 0

− (olm0+olm1)
2

(orm0+orm1)
2

 (31)
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ΦC =
∂G

O1
δθ

∂δICR
= ∆t

1

∆Y 2 Jr

[
0 0 0
0 0 0

0
αl(olm0+olm1)

2
−αr(orm0+orm1)

2
−αl(olm0+olm1)

2
+
αr(orm0+orm1)

2

]
(32)

ΦD =
G
O1
δθ

∂δα
= ∆t

1

∆Y
Jr

 0 0
0 0

− (olm0+olm1)
2

(orm0+orm1)
2

 (33)

As for the propagated covariances, we can obtain them by:

P1 = 1
0ΦP0

1
0Φ
> + G0Q0G0

> (34)

where Q0 ∈ R9×9 is the covariance of noises affecting
[
ICR>,α>,o>0 ,o

>
1

]>
. Since we start the integra-

tion form t0, P0 is zero matrix. And G0 is the Jacobian with respect to the noises,

G0 =


ΦA ΦB GA GB

ΦC ΦD GC GD

I3×3 03×2 03×2 03×2

02×3 I2×2 02×2 02×2

 (35)

In the above expression, GA =
∂GδpO1
∂δo0

,GB =
∂GδpO1
∂δo1

,GC =
∂GO1

δθ

∂δo0
,GD =

∂GO1
δθ

∂δo1
,

GA =
∆t

2∆Y
G
O0

R ∗


−αlYr αrYl
αlXv −αrXv

0 0

− 1

2
O0
O1

RbvO1cJr

 0 0
0 0
−αl αr


 (36)

GB =
∆t

2∆Y
G
O0

R ∗

O0
O1

R

−αlYr αrYl
αlXv −αrXv

0 0

− 1

2
O0
O1

RbvO1cJr

 0 0
0 0
−αl αr


 (37)

GC = GD =
∆t

2∆Y
Jr

 0 0
0 0
−αl αr

 (38)

In analogy to Eq. 21, we can compute GpOk
,GOk

R by the intermediate measurements Ol iteratively. In
addition, the covariance Pk at time t(k) can be also obtained iteratively like Eq. 34, and we have Λodom =
P−1
k .
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