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1 Problem Formulation

1.1 State Vector

Besides the IMU states x;, the IMU clones at the time instants of receiving camera and LiDAR measure-
ments x¢o and X7, we also estimate the extrinsics between camera and IMU X4, and the extrinsics
between LiDAR and IMU x_ ;5 1, as [1]. We keep m and n clones in the sliding window corresponding to
images and LiDAR scans, respectively. Furthermore, we also incorporate the stably tracked SLAM point
landmarks “x ¢ and SLAM plane landmarks Ax into the state vector. These SLAM features are “long
lived” and through frequent matching can limit estimation drift. The point landmark are denoted in global
frame {G}, while the plane landmark are denoted in its anchor frame {A}, which is the LiDAR frame
whether it was firstly observed. To limit the computational cost of the system, we keep point and plane
landmarks in the state vector up to maximums of g and h, respectively. In summary, the state vector is:

-
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In the above, { I} } is the local IMU frame at time instant ¢. gfcj is a unit quaternion in JPL format [2], which
represents 3D rotation %R from {I;;} to {G}. “v,, “py, denotes the velocity and position of IMU in {G'}.
Moreover, b, and b, are the gyro and accelerator biases that corrupt the IMU measurements respectively.
The system error state for x is defined as & = = — 4 where % is the current estimate'.

Furthermore, In Eq. 3 and Eq. 4, t47, and t4¢ are the time offsets between LiDAR - IMU, and Camera
- IMU. IMU is the base sensor in our framework, we need to know the time offsets between IMU and the
other sensors. The reported timestamp ¢¢ and ¢7, from camera and LiDAR have the following relationship
with the IMU clock ¢;:

tr =tc +tic (9a)
tr =t +tqr (9b)

Once a LiDAR scan received at time ¢, , corresponding to IMU clock ¢y, ,, we will propagate the IMU
state x; from time ¢7, to ¢7,,. And clone the IMU pose in the propagated x; at time ¢, , into the state

!% holds for velocity, position, bias, except for the quaternion, which follows: § ~ [%60-'— 1]T ® q where ® denotes quaternion
multiplication [2], and §8 is the corresponding error state.
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vector. Since the cloned pose is a function of ¢4, once the cloned pose is updated, ¢,47, can be also updated [,
]. Analogously, the time offset between camera and IMU ¢;- can be updated with the cloned poses at
receiving images.

We additionally store environmental visual features, Gp - represented in the global frame of reference,
and store environmental plane features represented in an anchored frame {A}. The plane is represented by
the closest point [4, 5], and the anchored representation can avoid the singularity when the norm of “p
approaches zero [4]. These long-lived planar features will be tracked in incoming LiDAR scans using the
proposed tracking algorithm until they are lost.

With the above notation, the relative pose {fz R, “pyr,} between two LiDAR frames L, and L at time

instants ¢, and ¢; in IMU clock can be computed by IMU clones {él R, GPIQ}, {g’R, “p 1, }, and extrinsics
{%R, Lpf } :

T
I'R—{R{R (fRER) (10a)
“pr, = FRER (ERTpr+Cps, —Cps, ) + i (10b)

Furthermore, a LIDAR point “ep ¢ in frame L, can be transformed into L;, through

Lopy = P REepy + Lopy, (11)

1.2 Point-to-Plane Measurement Model

We leverage the high-frequency IMU measurement for prediction. And the image processing pipeline is the
same with MSCKEF [6, 7] and OpenVINS [8]. To summarize the image pipeline in brief, after triangulating
point landmarks from its observations tracked in multiple images, the residual based on reprojection error
will be used to update the related states in the state vector. Few point landmarks with a long track length will
be initialized in the state vector as SLAM point landmarks, most point landmarks with short track length will
not added into the state vector as MSCKF point landmarks. MSCKF point landmarks will not be dropped
after updating with their observations. Here we only present the plane landmarks based LiDAR processing
pipeline into details.

Considering a LiDAR planar point measurement, “p - that is sampled on the plane Ap; . We can define
the point-to-plane distance measurement model:

LPT L L
2x = e (“py = ny) = | s (12)
[“p=||
where ny ~ N (0, 0]2013). With a slight abuse of notation, by defining “d = HLpWH and I'n = I'p,/ ‘Lpﬁ ,

a plane “p, can be transformed into the local frame by:

In LR 0| |“n
)=

1.3 LiDAR Plane Feature Update
1.3.1 MSCKF Plane Feature

Analogous to point features [7], we divide all the tracked plane features from the LiDAR pointclouds into
“MSCKF” and “SLAM” based on the track length. Note that the sliding-window-based plane tracking is
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explained in detail in [9]. Considering we have a series of measurements collected over the whole sliding
window of the plane feature Apﬂj, we can linearize the measurements zgf ) in Eq. (12) at current estimates

of Apﬂj and the states x as:

o) =02 ~ HYx + HY b, + HYnf (14)
where n) denotes the stacked noise vector. ng ), ngj ) and H%] ) are the stacked Jacobians with respect to
pose states, the plane landmark and the measurement noise, respectively.

(J ) induced by the planar LiDAR point observement e p; of the

plane feature Ly Pr;, We can linearize the measurement as follow. Firstly, HE,;{) is the Jacobian of z(j ) with

respect to the IMU clones x7, = [, “pi ] xp = [IGbch, GpIT] and extrinsics xz; = [Fg', LpIT]

) s

Considering only one measurement z;

in the state vector. HE,;{ is composed by

a~(j) Ly T )
2fi Pr; IphplpT|LRT/(L L Lnh

=i * | TRGRGR TR ("pr — " py,)] IRGR] (15)
pﬂ'j -

0Xjq

i _ P IR+ [(RERTIRT (L“Pfi—LPI)—g’R (szb—pra)J —%RQR} (16)
pr| L

%1,

0zy)  bpl

s = [ LR o)+ 2R (s for) — PRER (s i) 1R

bopr,
(17)
Then,
() Ly T LyTL
H(]) — a fL _ bpfl _ bpfl bnﬂ—j + 1 LbnT (18)
ur OLlvh Pr; T Ly dﬂ] Ly dﬂ'j 5
and
, 97\9) LipT
HY) = aLaﬁ = — % PR (19)
fi ’ prﬂj

If “p,. is a MSCKF plane landmark, the nullspace operation [10] is performed to remove the depen-
dency on “'py; by projection onto the left nullspace N of :

NTl‘Ecj) = NTHY)x + N'HY"p, + NTHY)ny) (20)
= r¥) = H)x + nf) 21

Due to the special structure that H(j )H(j T = I,, the measurement covariance is still is isotropic and thus the

nullspace operation is still valid (i.e. UQNTH( )H(j TN = 071,). By stacking the residuals and Jacobians
of all MSCKF plane landmarks, we obtaln

Tfo = H;x +n, (22)

This stacked system can then update the state and covariance using the standard EKF update equations.
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1.3.2 SLAM Plane Feature

If “ep, is a SLAM plane landmark that already exists in the state, we can directly update its estimate and
the state using Eq. (14). To determine whether a plane feature with a long track length should be initialized
into the state as a SLAM feature, we note that planes constrain the current state estimate based on their
normals. In the case that three planes that are not parallel to each other are observed, then the current
state estimate can be well constrained [11]. Thus, we opt to insert “informative” planes whose normal
directions are significantly different from the planes currently being estimated (in our implementation, we
only insert planes whose normal directions have greater than ten degrees difference). Along with augmenting
the SLAM plane feature into state vector, we also need to augment the state covariance matrix with the plane
feature’s initial covariance and cross-correlation with the other states, which is analogous to the SLAM point
feature [12]. Since Lapﬂ is anchored in local LiDAR reference frame, once frame L, needs to be removed
from the sliding window, we will change its anchor frame to the newest LiDAR frame L; in the sliding
window by:

bope = Pnted, = iR en (Mp] R n P ) (23)
And the related states are X7, = [5G, “pi ] xp = [g’qT, GpITb]T, extrinsics x,; = [¥¢",p/]T, and
the plane feature “ep,.

o pn. 1
97epy, ~ Tod [(L“dﬁ“paézfi“nw) fZRﬁZRL“nﬂprMZR] (1-"enston] )+ Rin ton]
Tl’j ™

(24

1",

where {fz R, “pr.} can be computed as Eq. 10. With a slight abuse of notation, x,, = [fz g, prza
we can compute Jacobians as

ol p,.. T
T | b (R foREen (2R | =
a
and
0%as | —IRERERT 0 6)
ox1,  [fRGRGRTIR"'pr] FROR
O%ay R 0 o7
0%, |—TR|ZR <é’RT%RTLp1 +Spy, — Gp1a>J ~IR{R
. L

% I-7°R 0

Xab _ LH. (28)

% |lf'Rpr — FRER (pr, — Opy, )|~ "RIPpr] 1-['R

2 Observability Analysis

The observability analysis of vision-aided-inertial navigation system with online calibration has been studied
extensively in iteratures [1 1, 13, 14], however, the analysis for LIDAR-aided-Inertial navigation with online
calibration using plane features is still missing. In addition, since the calibration between IMU-CAM and
IMU-LiDAR calibration are independent, previously identified degenerate motions for VINS calibration
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cannot be directly applied to IMU-LiDAR cases with plane features. Hence, in this paper, we focus on the
subsystem of LIC-Fusion 2.0 with IMU and LiDAR only and study specifically the degenerate cases for
online spatial-temporal IMU-LiDAR calibration using plane features. In particular, the observability matrix
M(x) is given by:
Hx1®1,1)
Mx)=| 29)
Hy 1P (x,1)

where Hy ;, represents the measurement Jacobians at time-step k. The right null space of M(x), denoted
by N, indicates the unobservable directions of the underlying system.
2.1 State Vector and State Transition Matrix

As in our previous work [15], the closest point of the plane is the point with the smallest distance from the
plane to the origin. The closet point for plane can be written as:

Pr = d7r Ny (30)

Hence, the state vector with a CP plane in the state vector can be written as:

T
x = [x} xI . Gpl G1)

caliby,

T
Note that we further denote X415, = [XI 7 td L} where x 1 represents the rigid transformation (% 7. 'p )
between IMU and LiDAR. The state transition matrix can be written as:

P/ O15x7  O15x3

P41 = [O7x15 Peaiv..  O7x3 (32)
O3x15  Osx7 P,
Where ®; denotes the IMU state transition matrix [13, 16]. ®.q.1, = I7 and @, = I3. Note that without

loss of generality for analysis, we represent the plane feature in the global frame {G'}.

2.2 Point-to-Plane Measurement
We use the point-to-plane distance as the measurement for the plane as:
tpl (“ps—mny)

Z; =
[Pl

(33)

—Hpr

and

where Lp}— is a LIDAR point from the plane, n; is the measurement noise. If we denote Ld = HL Pr

L _ pr
" e

we can write the transformation of plane from {G} to {L} as:

In _ IR 034 IR 0341 |“n (34)
Lq LplIR 1 ~Gp] 1 Gq

Note that éR and “py is also a function of time offset. The measurement Jacobians w.r.t. to the state vector
can be written as:

H - 0z, [ag,r O5x  03x  O%x } (35)

T 9x 9% Oxpr o otgr  0%Pa
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According to the chain rule, the Jacobians can be computed:

8_L

3_L
a_L

a_L

8_L

For simplicity, we define:

T

Gid%RéR (Ig - GnGnT>
Gid (Lp}'%RIGR _ pr) (13 _ GnGnT) 4 GpT

. LT
2 = o tatar)
aL~ -
- TrL T = _LdI3 LII:|
n d
a’ LoZ_T [ Lp|IRCG
] . IRLGR IIJ 03
% |'pliRILROn) ]
e
n. “d | |LRLRCn| 03
oxrr |"p/ JRLR%n] GnTéRT%RT]
n' LJ-T I L |l Gl
l [RIcR"n| w
G |PTFRURCn)w O Gn]
AT 7
n’ Ld
P N

0%, Op,
B 8LI~)7T B [LﬁT LJ]—r

H-

Therefore, we can get the overall measurement Jacobians as:

Hx:HW[

where we have:
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IRLR 03
1

Hy; “n’ 03 03 03 Hys Hyy Hog

][Hn 03 03 03 03 Hig 03 Hig

HH = LGI’IJ IGR
His = |“n|fRIR
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1
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(36)
(37

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)
(46)
47)

(48)

(49)
(50)
(5D
(52)

(53)



2.3 Observability Analysis

Following the observability analysis in [
My = Hxr ® (10)

IRLR 03, 1] [an

=H
1 01x3 1 ['ro1

where we have:

Iy =Hnu®m = “n)fR

03
GnT GnT Atk

03

Ty =H;®ns = —|“n) 7RI, () Aty,

I''g = Hig = LGnJIG,cRiR
Flg = ng = LG jGRI’“w

yg = Hyg = GleI’“R<

Ty = Hy ®711 + “n' @59y

L Tl |knGa il G
="pr[R[GR nJ[’SR—

oy = Ho1 P14 + GHT‘I>124 =

GnGnT>

G T
F25: n ‘I)[25 - Il IOR‘—‘

Ty = Ho = I'p

LLI{ka{G J
F27 — H27 G TI RTLRT

Ios = Hos = “p] FR|ERn) w

_ G

nT’UﬁpIk__

n

TG

03
117r25

1
Fzg = H29 = = (L TLRGR G ) (13 - GHGDT)

I_‘7r16

03

[rog L'ror

—Lp,T%RLgsRGn |3, (t) Aty + 0§

+—GIfT

Io R:,4

], we can construct the k-th block of the observability matrix as:

(54)

(55)
(56)
(57
(58)

(39
(60)
(61)

(62)
(63)
(64)
(65)
(66)

(67)

Lemma 1. For LiDAR aided INS, if the state vector contains IMU state, spatial/temporal calibration be-
tween IMU-LiDAR and a plane feature, the system will have at least 7 unobservable directions as N(™).

¢R%
- LGIA)IlJGg
- LG\A’IJGg
03><1
N(ﬂ-) = 031
03><1
03x1
0
- I_GCZT{'GﬁTI'J Gg

The Ngﬂ) relates to the global yaw around the gravity direction, N,

platform, N;.¢ relates to the velocity parallel to the plane and Ngw)

(m)

03x1
Gﬁ%
03x1
03x1
03x1
03x1
03x1
0

03x1

03x1
Gﬁ%
03x1
03x1
03x1
03x1
03x1
0

03x1

03x1
03x1

G h
nj

03x1
03x1
03x1
03X1
0

03X1

()

.4 relate to the aided INS sensor

03x1
03x1
Gﬁ%
03x1
03x1
03x1
03x1
0

03x1

o
GlRGn7r

031
03x1
03x1
03x1
03x1

03x1
0

03x1 1

(68)

relates to the rotation around the plane

normal direction. Given 3D random motions, I';1g, I'z18, I'r2g, I'no7 and I';og tend to build full rank

columns and make both the spatial and temporal calibration between LiDAR-IMU observable.
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2.4 Degenerate Cases Analysis for LIDAR-IMU Calibration

Given the LiDAR aided IMU system with plane features, the online calibration will suffer some degenerate
cases that can cause the calibration parameters to be unobservable.

2.4.1 One-Plane Case

One-plane case refers to the cases there is only one plane or parallel planes in the state vector. We have

identified the following degenerate motions for the LIDAR-IMU calibration:

* Pure Translation: if the system undergoes pure translation, the rigid transformation between LiDAR-

IMU will be unobservable. The unobservable directions can be written as:

O15x1
IRERn
03x1
0

03x1

O15x3

I
IRLRCR,

03

0
TG

€; 1

where “R; = [an ®ny  “n| denotes the plane orientation.

(69)

« One-axis rotation: if the system undergoes one-axis rotation, with fixed rotation axis as “k, the trans-
lation between LiIDAR-IMU are not observable with unobservable directions as INT,. Note that if the
rotation axis is perpendicular to the plane direction, we will have an extra unobservable direction as

T
13-

03x1 03x1

YRIR'k 03,

T213 = | O12x1 0121
Lk Lk

04x1 04x1

(70)

« Similar to IMU-CAM calibration, if the system undergoes motions with constant ‘w&!v or constant
Tw&Ca, the IMU-LiDAR temporal calibration will also be unobservable with unobservable directions
as NT, or NT;, respectively. In addition, for one-plane case, we have an extra degenerate motion
(Cw || “nand “n L Gv;?) for time offset as NT.

ZuHﬁ
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O6x1 Osx1  Ogx1
031 “a; 0341
( O6x1 Osx1  Ogx1
16~ %LRI%‘ Rlw 030
—TR'v  03x1  O3x1

-1 -1 1
031 O3x1  O3x1

and “ 1 ” denote parallel and perpendicular relationship, respectively.

(71)



2.4.2 Two-Plane Case
Two-Plane case refers to the cases that there are two intersected planes or all the planes have parallel inter-
sections in the state vector. We first modify our state vector as:

-
I I . GoT  GAT
X=1X; Xegiip,  Prl sz] (72)

We have identified the following degenerate motions for the LiDAR-IMU calibration:

* Pure translation: if the system undergoes pure translation, the translation of rigid transformation be-
tween LIDAR-IMU will be unobservable. The unobservable directions can be written as:

015%3
03
Lpl
LRIR
0
TG,. GpT
engnﬂGR?
_eg Il7r2 R7T'2_

N71r7:19 = (73)

where “R; = [Gn#ﬂ Snt, %ngl,i={1,2} denotes the plane orientation.

* One-axis rotation: if the system undergoes one-axis rotation, with fixed rotation axis as "k, the trans-
lation between LiIDAR-IMU are not observable with unobservable directions as IN7,. Note that if the
rotation axis is parallel to both planes’ intersection direction ({ RIRYk || [“nz1]%nzg), we will
have an extra unobservable direction as IN7; .

03x1 03x1
YRIR'k 03
N3p.01 = 012x1 O12x1 (74)
Lk Lk
I 07x1 07x1 |

« If the system undergoes motions with constant / w&’v or constant /w&“a, the IMU-LiDAR temporal
calibration will also be unobservable with unobservable directions as N7, or N3, respectively. In ad-

dition, for two-plane case, we have an extra degenerate motion (constant 'w and “v7 || |“n,1|“nyo)
for time offset as IN7,.
O6x1 Osx1  Osx1
03x1 Sa; 0341
(m) L06>;1 L06>;1 L06>;1
Nogios= ILR w Rw 7Rw (75)
—rR'v 0351 O3x1
-1 -1 -1
| O6x1 O6x1 Opx1 |
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2.4.3 Multiple-Plane Case

Multiple-Plane case refers to the cases that there are at least three intersecting planes with unparalleled plane
intersections in the state vector. We first modify our state vector as:

T

I I GT G.T GaT
X= [XI Xealiy ~ Prx1 Pr2 " Pas

We have identified the following degenerate motions for the LiDAR-IMU calibration:

(76)

* Pure translation: if the system undergoes pure translation, the translation of rigid transformation be-

tween LIDAR-IMU will be unobservable. The unobservable directions can be written as:

s —
PJQ&Z?‘_

il Ti2

where °R; = [Gnl “nt, “ng|,i={1,2,3} denotes the plane orientation.

O15x3
03
Lph
RgR
0
TG,, .GpT
enganR?l
es "N R o

TG GRrT
_83 1’17r3 Rﬂ.3_

7

* One-axis rotation: if the system undergoes one-axis rotation, with fixed rotation axis as “k, the trans-

lation between LiDAR-IMU are not observable with unobservable directions as N7g.

s

28 —

03x1
CplInl
GRI Rk
O12x1
Lk
O10x1

(78)

« If the system undergoes motions with constant /w&?v or constant ! w&“a, the IMU-LiDAR temporal

calibration will also be unobservable with unobservable directions as N7, or N3, respectively.

Ngg?:zo =

TR-2020-LICfusion2

O6x1 O6x1
0O3x1 “ay
O6x1 O6x1
%le %wa
~IRIv 03
-1 -1

09x1 09x1

(79)
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Table 1: Summary of Degenerate Motions for VINS Calibration

One Plane / Parallel Planes Unobservable
Pure Translation LR, Ip;
1-axis Rotation LPI
Constant ‘w and 'v tar, 'p1
Constant ‘w and ©a tar, 'pr
Gw | “nand “n 1 Gv; tar
Two Planes with Intersection Unobservable
Pure Translation Lp;
1-axis Rotation LPI
Constant ‘w and 'v tar, 'p1
Constant ‘w and €a tar, 'pr
Constant “w and “v7 || |“nq1 ] %0 tar
Multiple Planes Unobservable
Pure Translation L Pr
1-axis Rotation Ip;
Constant w and 'v tar, 'p1
Constant ‘w and €a tar, Ipr
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