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1 Problem Formulation

1.1 State Vector

Besides the IMU states xI , the IMU clones at the time instants of receiving camera and LiDAR measure-
ments xC and xL, we also estimate the extrinsics between camera and IMU xcalib C and the extrinsics
between LiDAR and IMU xcalib L as [1]. We keep m and n clones in the sliding window corresponding to
images and LiDAR scans, respectively. Furthermore, we also incorporate the stably tracked SLAM point
landmarks Gxf and SLAM plane landmarks Axπ into the state vector. These SLAM features are “long
lived” and through frequent matching can limit estimation drift. The point landmark are denoted in global
frame {G}, while the plane landmark are denoted in its anchor frame {A}, which is the LiDAR frame
whether it was firstly observed. To limit the computational cost of the system, we keep point and plane
landmarks in the state vector up to maximums of g and h, respectively. In summary, the state vector is:

x =
[
x>I x>calib C x>calib L x>C x>L

Gxf
Axπ

]>
(1)

where

xI =
[
Ik
G q̄
> b>g

Gv>Ik b>a
Gp>Ik

]>
(2)

xcalib C =
[
C
I q̄
> Cp>I tdC

]>
(3)

xcalib L =
[
L
I q̄
> Lp>I tdL

]>
(4)

xC =

[
Ic0
G q̄> Gp>Ic0

· · · Icm−1

G q̄> Gp>Icm−1

]>
(5)

xL =

[
Il0
G q̄> Gp>Il0

· · ·
Iln−1

G q̄> Gp>Iln−1

]>
(6)

Gxf =
[
Gp>f0

Gp>f1 · · ·
Gp>fg−1

]>
(7)

Axπ =
[
Ap>π0

Ap>π1 · · ·
Ap>πh−1

]>
(8)

In the above, {Ik} is the local IMU frame at time instant tk. IkG q̄ is a unit quaternion in JPL format [2], which
represents 3D rotation Ik

GR from {Ik} to {G}. GvIk , GpIk denotes the velocity and position of IMU in {G}.
Moreover, bg and ba are the gyro and accelerator biases that corrupt the IMU measurements respectively.
The system error state for x is defined as x̃ = x− x̂ where x̂ is the current estimate1.

Furthermore, In Eq. 3 and Eq. 4, tdL and tdC are the time offsets between LiDAR - IMU, and Camera
- IMU. IMU is the base sensor in our framework, we need to know the time offsets between IMU and the
other sensors. The reported timestamp tC and tL from camera and LiDAR have the following relationship
with the IMU clock tI :

tI = tC + tdC (9a)

tI = tL + tdL (9b)

Once a LiDAR scan received at time tLk+1
corresponding to IMU clock tIk+1

, we will propagate the IMU
state xI from time tIk to tIk+1

. And clone the IMU pose in the propagated xI at time tIk+1
into the state

1x̃ holds for velocity, position, bias, except for the quaternion, which follows: q̄ ' [ 1
2
δθ> 1]> ⊗ ˆ̄q where ⊗ denotes quaternion

multiplication [2], and δθ is the corresponding error state.
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vector. Since the cloned pose is a function of tdL, once the cloned pose is updated, tdL can be also updated [1,
3]. Analogously, the time offset between camera and IMU tdC can be updated with the cloned poses at
receiving images.

We additionally store environmental visual features, Gpf , represented in the global frame of reference,
and store environmental plane features represented in an anchored frame {A}. The plane is represented by
the closest point [4, 5], and the anchored representation can avoid the singularity when the norm of Gpπ
approaches zero [4]. These long-lived planar features will be tracked in incoming LiDAR scans using the
proposed tracking algorithm until they are lost.

With the above notation, the relative pose {LbLaR,
LbpLa} between two LiDAR frames La and Lb at time

instants ta and tb in IMU clock can be computed by IMU clones {IaGR,GpIa}, {
Ib
GR,GpIb}, and extrinsics

{LI R, LpI} :

Lb
La

R = L
I RIb

GR
(
L
I RIa

GR
)>

(10a)

LbpLa = L
I RIb

GR
(
Ia
GR>IpL+GpIa−GpIb

)
+LpI (10b)

Furthermore, a LiDAR point Lapf in frame La can be transformed into Lb through

Lbpf = Lb
La

RLapf + LbpLa (11)

1.2 Point-to-Plane Measurement Model

We leverage the high-frequency IMU measurement for prediction. And the image processing pipeline is the
same with MSCKF [6, 7] and OpenVINS [8]. To summarize the image pipeline in brief, after triangulating
point landmarks from its observations tracked in multiple images, the residual based on reprojection error
will be used to update the related states in the state vector. Few point landmarks with a long track length will
be initialized in the state vector as SLAM point landmarks, most point landmarks with short track length will
not added into the state vector as MSCKF point landmarks. MSCKF point landmarks will not be dropped
after updating with their observations. Here we only present the plane landmarks based LiDAR processing
pipeline into details.

Considering a LiDAR planar point measurement, Lpf , that is sampled on the plane Ap>π . We can define
the point-to-plane distance measurement model:

zπ =
Lp>π∥∥Lpπ

∥∥(Lpf − nf )−
∥∥∥Lpπ

∥∥∥ (12)

where nf ∼ N (0, σ2fI3). With a slight abuse of notation, by defining Ld =
∥∥∥Lpπ

∥∥∥ and Ln = Lpπ/
∥∥∥Lpπ

∥∥∥,

a plane Apπ can be transformed into the local frame by:[
Ln
Ld

]
=

[
L
AR 0
−Ap>L 1

][
An
Ad

]
(13)

1.3 LiDAR Plane Feature Update

1.3.1 MSCKF Plane Feature

Analogous to point features [7], we divide all the tracked plane features from the LiDAR pointclouds into
“MSCKF” and “SLAM” based on the track length. Note that the sliding-window-based plane tracking is
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explained in detail in [9]. Considering we have a series of measurements collected over the whole sliding
window of the plane feature Apπj , we can linearize the measurements z

(j)
f in Eq. (12) at current estimates

of Apπj and the states x as:

r
(j)
f = 0− z

(j)
f ' H(j)

x x̃ + H(j)
π
Lbp̃πj + H(j)

n n
(j)
f (14)

where n(j) denotes the stacked noise vector. H
(j)
x , H

(j)
π and H

(j)
n are the stacked Jacobians with respect to

pose states, the plane landmark and the measurement noise, respectively.
Considering only one measurement z

(j)
fi

induced by the planar LiDAR point observement Lapi of the

plane feature Lbpπj , we can linearize the measurement as follow. Firstly, H
(j)
xi is the Jacobian of z

(j)
fi

with

respect to the IMU clones xIa = [IaG q̄
>,Gp>Ia ]>, xIb = [IbG q̄

>,Gp>Ib ]
>, and extrinsics xLI = [LI q̄

>, Lp>I ]>

in the state vector. H
(j)
xi is composed by

∂z̃
(j)
fi

∂x̃Ia
=

Lbp>πj∥∥∥Lbpπj∥∥∥ ∗
[
L
I RIb

GRIa
GR>bLI R>(LpI − Lapfi)c L

I RIb
GR

]
(15)

∂z̃
(j)
fi

∂x̃Ib
=

Lbp>πj∥∥∥Lbpπj∥∥∥ ∗
[
L
I R ∗ bIbGRIa

GR>LI R>
(
Lapfi − LpI

)
− Ib
GR

(
GpIb − GpIa

)
c −LI RIb

GR

]
(16)

∂z̃
(j)
fi

∂x̃LI
=

Lbp>πj∥∥∥Lbpπj∥∥∥ ∗
[
Lb
La

RbLpI − Lapfic+ bLbLaR
(
Lapfi − LpI

)
− L
I RIb

GR
(
GpIb − GpIa

)
c I− Lb

La
R

]
(17)

Then,

H(j)
πi =

∂z̃
(j)
fi

∂Lbp̃πj
=

Lbp>fi
Lbdπj

−

(
Lbp>fi

Lbnπj
Lbdπj

+ 1

)
Lbn>πj (18)

and

H(j)
ni =

∂z̃
(j)
fi

∂Lanfi
=

Lbp>πj∥∥∥Lbpπj∥∥∥ ∗ IbIaR (19)

If Apπj is a MSCKF plane landmark, the nullspace operation [10] is performed to remove the depen-
dency on Apπj by projection onto the left nullspace N of :

N>r
(j)
f = N>H(j)

x x̃ + N>H(j)
π
Lbp̃π + N>H(j)

n n
(j)
f (20)

⇒ r
(j)
fo = H(j)

xo x̃ + n(j)
o (21)

Due to the special structure that H
(j)
n H

(j)
n
> = In the measurement covariance is still is isotropic and thus the

nullspace operation is still valid (i.e. σ2fN
>H

(j)
n H

(j)
n
>N = σ2fIn). By stacking the residuals and Jacobians

of all MSCKF plane landmarks, we obtain:

rfo = Hxox̃ + no (22)

This stacked system can then update the state and covariance using the standard EKF update equations.
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1.3.2 SLAM Plane Feature

If Lapπ is a SLAM plane landmark that already exists in the state, we can directly update its estimate and
the state using Eq. (14). To determine whether a plane feature with a long track length should be initialized
into the state as a SLAM feature, we note that planes constrain the current state estimate based on their
normals. In the case that three planes that are not parallel to each other are observed, then the current
state estimate can be well constrained [11]. Thus, we opt to insert “informative” planes whose normal
directions are significantly different from the planes currently being estimated (in our implementation, we
only insert planes whose normal directions have greater than ten degrees difference). Along with augmenting
the SLAM plane feature into state vector, we also need to augment the state covariance matrix with the plane
feature’s initial covariance and cross-correlation with the other states, which is analogous to the SLAM point
feature [12]. Since Lapπ is anchored in local LiDAR reference frame, once frame La needs to be removed
from the sliding window, we will change its anchor frame to the newest LiDAR frame Lb in the sliding
window by:

Lbpπ = Lbnπ
Lbdπ = Lb

La
RLan

(
Lbp>La

Lb
La

RLanπ + Ladπ

)
(23)

And the related states are xIa = [IaG q̄
>,Gp>Ia ]>, xIb = [IbG q̄

>,Gp>Ib ]
>, extrinsics xLI = [LI q̄

>, Lp>I ]>, and
the plane feature Lapπ.

∂Lbp̃πj
∂Lap̃πj

=
1

Ladπ

[(
Ladπ+Lbp>La

Lb
La

RLanπ

)
Lb
La

R+Lb
La

RLanπ
Lbp>La

Lb
La

R

](
I−LanπLan>π

)
+Lb
La

RLanπ
Lan>π

(24)

where {LbLaR,
LbpLa} can be computed as Eq. 10. With a slight abuse of notation, xab = [LbLa q̄

>, Lbp>La ]>,
we can compute Jacobians as

∂Lbp̃πj
∂x̃ab

=

[
bLbpπc+ Lb

La
RLanLbp>Lab

Lb
La

RLanc Lb
La

RLan
(
Lb
La

RLan
)>]

(25)

and

∂x̃ab
∂x̃Ia

=

[
−LI RIb

GRIa
GR> 0

L
I RIb

GRIa
GR>bLI R>LpIc L

I RIb
GR

]
(26)

∂x̃ab
∂x̃Ib

=

 L
I R 0

−LI RbIbGR
(
Ia
GR>LI R>LpI + GpIb − GpIa

)
c −LI RIb

GR

 (27)

∂x̃ab
∂x̃LI

=

 I− Lb
La

R 0

bLbLaR
LpI − L

I RIb
GR

(
GpIb − GpIa

)
c − Lb

La
RbLpIc I− Lb

La
R

 (28)

2 Observability Analysis

The observability analysis of vision-aided-inertial navigation system with online calibration has been studied
extensively in iteratures [11, 13, 14], however, the analysis for LiDAR-aided-Inertial navigation with online
calibration using plane features is still missing. In addition, since the calibration between IMU-CAM and
IMU-LiDAR calibration are independent, previously identified degenerate motions for VINS calibration
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cannot be directly applied to IMU-LiDAR cases with plane features. Hence, in this paper, we focus on the
subsystem of LIC-Fusion 2.0 with IMU and LiDAR only and study specifically the degenerate cases for
online spatial-temporal IMU-LiDAR calibration using plane features. In particular, the observability matrix
M(x) is given by:

M(x) =


Hx,1Φ(1,1)

...
Hx,kΦ(k,1)

 (29)

where Hx,k represents the measurement Jacobians at time-step k. The right null space of M(x), denoted
by N, indicates the unobservable directions of the underlying system.

2.1 State Vector and State Transition Matrix

As in our previous work [15], the closest point of the plane is the point with the smallest distance from the
plane to the origin. The closet point for plane can be written as:

pπ = dπnπ (30)

Hence, the state vector with a CP plane in the state vector can be written as:

x =
[
x>I x>calibL

Gp>π

]>
(31)

Note that we further denote xcalibL =
[
x>LI tdL

]>
where xLI represents the rigid transformation (LI q̄,

LpI)

between IMU and LiDAR. The state transition matrix can be written as:

Φ(k,1) =

 ΦI 015×7 015×3
07×15 Φcalib L 07×3
03×15 03×7 Φπ

 (32)

Where ΦI denotes the IMU state transition matrix [13, 16]. Φcalib L = I7 and Φπ = I3. Note that without
loss of generality for analysis, we represent the plane feature in the global frame {G}.

2.2 Point-to-Plane Measurement

We use the point-to-plane distance as the measurement for the plane as:

zπ =

Lp>π

(
Lpf − nf

)
∥∥Lpπ

∥∥ −
∥∥∥Lpπ

∥∥∥ (33)

where Lp>f is a LiDAR point from the plane, nf is the measurement noise. If we denote Ld =
∥∥∥Lpπ

∥∥∥ and
Ln =

Lpπ

‖Lpπ‖ , we can write the transformation of plane from {G} to {L} as:[
Ln
Ld

]
=

[
L
I R 03×1

Lp>I
L
I R 1

][
I
GR 03×1
−Gp>I 1

][
Gn
Gd

]
(34)

Note that IGR and GpI is also a function of time offset. The measurement Jacobians w.r.t. to the state vector
can be written as:

H
(π)
x =

∂z̃π
∂x̃

=
[
∂z̃π
∂x̃I

∂z̃π
∂x̃LI

∂z̃π
∂ ˜tdL

∂z̃π
∂Gp̃π

]
(35)
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According to the chain rule, the Jacobians can be computed:

∂z̃π
∂Lp̃π

=
Lp>f
Ldπ

(
I3 − Lnπ

Ln>π

)
− Ln>π (36)

(37)

∂Lp̃π

∂
[
Lñ> Ld̃

]> =
[
LdI3

Ln
]

(38)

∂
[
Lñ> Ld̃

]>
∂x̃I

=

[
L
I RbIGRGnc 03

Lp>L
L
I RbIGRGnc Gn>

]
(39)

∂
[
Lñ> Ld̃

]>
∂x̃LI

=

[
bLI RI

GRGnc 03
Lp>I bLI RI

GRGnc Gn>IGR>LI R>

]
(40)

∂
[
Lñ> Ld̃

]>
∂t̃dL

=

[
L
I RbIGRGncIω

Lp>I
L
I RbIGRGncIω − Gv>I

Gn

]
(41)

∂
[
Lñ> Ld̃

]>
∂Gp̃π

=

 1
Gd

L
I RI

GR
(
I3 − GnGn>

)
1
Gd

(
Lp>I

L
I RI

GR− Gp>I

)(
I3 − GnGn>

)
+ Gn>

 (42)

For simplicity, we define:

Hπ =
∂z̃π
∂Lp̃π

∂Lp̃π

∂
[
Lñ> Ld̃

]> (43)

Therefore, we can get the overall measurement Jacobians as:

Hx = Hπ

[
L
I RI

GR 03

01×3 1

][
H11 03 03 03 03 H16 03 H18 H19

H21
Gn> 03 03 03 H26 H27 H28 H29

]
(44)

where we have:

H11 = bGncGI R (45)

H16 = bGncGI RI
LR (46)

H18 = bGncGIkR
Iω (47)

H19 =
1
Gd

L
I RI

GR
(
I3 − GnGn>

)
(48)

H21 = Lp>I
L
I RbIGRGnc (49)

H22 = Lp>I bLI RI
GRGnc (50)

H27 = Gn>IGR>LI R> (51)

H28 = Lp>I
L
I RbIGRGncIω − Gn>GvI (52)

H29 =
1
Gd

(
Lp>I

L
I RI

GR− Gp>I

)(
I3 − GnGn>

)
+ Gn> (53)

TR-2020-LICfusion2 6



2.3 Observability Analysis

Following the observability analysis in [17], we can construct the k-th block of the observability matrix as:

Mk = HxkΦ(k,0) (54)

= Hπ

[
L
I RI

GR̂ 03×1
01×3 1

][
Γπ11 03 03 Γπ14 03 Γπ16 03 Γπ18 Γπ19
Γπ21

Gn> Gn>∆tk Γπ24 Γπ25 Γπ26 Γπ27 Γπ28 Γπ29

]

where we have:

Γ11 = H11ΦI11 = bGncGI0R (55)

Γ14 = H11ΦI14 = −bGncGIkRJr(tk)∆tk (56)

Γ16 = H16 = bGncGIkR
I
LR (57)

Γ18 = H18 = bGncGIkR
Ikω (58)

Γ19 = H19 =
1
Gd

L
I RIk

GR
(
I3 − GnGn>

)
(59)

Γ21 = H21ΦI11 + Gn>ΦI21 (60)

= Lp>I
L
I RbIkGRGncIkI0R−

Gn>bGpIk −
GpI0 − GvI0∆tk +

1

2
Gg∆t2kcGI0R (61)

Γ24 = H21ΦI14 + Gn>ΦI24 = −Lp>I
L
I RbIkGRGncJr(tk)∆tk + Gn>GI0RΞ4 (62)

Γ25 = Gn>ΦI25 = −Gn>GI0RΞ2 (63)

Γ26 = H26 = Lp>I bLI RIk
GRGnc (64)

Γ27 = H27 = Gn>IGR>LI R> (65)

Γ28 = H28 = Lp>I
L
I RbIGRGncIω − Gn>GvI (66)

Γ29 = H29 =
1
Gd

(
Lp>I

L
I RI

GR− Gp>I

)(
I3 − GnGn>

)
+ Gn> (67)

Lemma 1. For LiDAR aided INS, if the state vector contains IMU state, spatial/temporal calibration be-
tween IMU-LiDAR and a plane feature, the system will have at least 7 unobservable directions as N(π).

N(π) =



I1
G R̂Gg 03×1 03×1 03×1 03×1 03×1

I1
G R̂Gn̂π

−bGp̂I1cGg Gn̂⊥1
Gn̂⊥2

Gn̂π 03×1 03×1 03×1
−bGv̂I1cGg 03×1 03×1 03×1

Gn̂⊥1
Gn̂⊥2 03×1

03×1 03×1 03×1 03×1 03×1 03×1 03×1
03×1 03×1 03×1 03×1 03×1 03×1 03×1
03×1 03×1 03×1 03×1 03×1 03×1 03×1
03×1 03×1 03×1 03×1 03×1 03×1 03×1

0 0 0 0 0 0 0

−bGd̂πGn̂πcGg 03×1 03×1
Gn̂π 03×1 03×1 03×1


(68)

The N
(π)
1 relates to the global yaw around the gravity direction, N

(π)
2:4 relate to the aided INS sensor

platform, N
(π)
5:6 relates to the velocity parallel to the plane and N

(π)
7 relates to the rotation around the plane

normal direction. Given 3D random motions, Γπ16, Γπ18, Γπ26, Γπ27 and Γπ28 tend to build full rank
columns and make both the spatial and temporal calibration between LiDAR-IMU observable.
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2.4 Degenerate Cases Analysis for LiDAR-IMU Calibration

Given the LiDAR aided IMU system with plane features, the online calibration will suffer some degenerate
cases that can cause the calibration parameters to be unobservable.

2.4.1 One-Plane Case

One-plane case refers to the cases there is only one plane or parallel planes in the state vector. We have
identified the following degenerate motions for the LiDAR-IMU calibration:

• Pure Translation: if the system undergoes pure translation, the rigid transformation between LiDAR-
IMU will be unobservable. The unobservable directions can be written as:

Nπ
8:11 =


015×1 015×3

L
I RI1

GRGn 03

03×1
L
I RI1

GRGRπ

0 0
03×1 e>3

Gn

 (69)

where GRπ =
[
Gn⊥1

Gn⊥2
Gn
]

denotes the plane orientation.

• One-axis rotation: if the system undergoes one-axis rotation, with fixed rotation axis as Lk, the trans-
lation between LiDAR-IMU are not observable with unobservable directions as Nπ

12. Note that if the
rotation axis is perpendicular to the plane direction, we will have an extra unobservable direction as
Nπ

13.

Nπ
12:13 =


03×1 03×1

G
I1

RI
LRLk 03×1

012×1 012×1
Lk Lk

04×1 04×1

 (70)

• Similar to IMU-CAM calibration, if the system undergoes motions with constant Iω&Iv or constant
Iω&Ga, the IMU-LiDAR temporal calibration will also be unobservable with unobservable directions
as Nπ

14 or Nπ
15, respectively. In addition, for one-plane case, we have an extra degenerate motion

(Gω ‖ Gn and Gn ⊥ GvI
2) for time offset as Nπ

16.

N
(π)
14:16=



06×1 06×1 06×1
03×1

GaI 03×1
06×1 06×1 06×1
L
I RIω L

I RIω 03×1
−LI RIv 03×1 03×1
−1 −1 1

03×1 03×1 03×1


(71)

2“ ‖ ” and “ ⊥ ” denote parallel and perpendicular relationship, respectively.
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2.4.2 Two-Plane Case

Two-Plane case refers to the cases that there are two intersected planes or all the planes have parallel inter-
sections in the state vector. We first modify our state vector as:

x =
[
x>I x>calibL

Gp>π1
Gp>π2

]>
(72)

We have identified the following degenerate motions for the LiDAR-IMU calibration:

• Pure translation: if the system undergoes pure translation, the translation of rigid transformation be-
tween LiDAR-IMU will be unobservable. The unobservable directions can be written as:

Nπ
17:19 =



015×3
03

L
I RI1

GR
0

e>3
Gnπ1

GR>π1
e>3

Gnπ2
GR>π2


(73)

where GRπi =
[
Gn⊥πi1

Gn⊥πi2
Gnπi

]
, i = {1, 2} denotes the plane orientation.

• One-axis rotation: if the system undergoes one-axis rotation, with fixed rotation axis as Lk, the trans-
lation between LiDAR-IMU are not observable with unobservable directions as Nπ

20. Note that if the
rotation axis is parallel to both planes’ intersection direction (GI1R

I
LRLk ‖ bGnπ1cGnπ2), we will

have an extra unobservable direction as Nπ
21.

Nπ
20:21 =


03×1 03×1

G
I1

RI
LRLk 03×1

012×1 012×1
Lk Lk

07×1 07×1

 (74)

• If the system undergoes motions with constant Iω&Iv or constant Iω&Ga, the IMU-LiDAR temporal
calibration will also be unobservable with unobservable directions as Nπ

22 or Nπ
23, respectively. In ad-

dition, for two-plane case, we have an extra degenerate motion (constant Iω and GvI ‖ bGnπ1cGnπ2)
for time offset as Nπ

24.

N
(π)
22:24=



06×1 06×1 06×1
03×1

GaI 03×1
06×1 06×1 06×1
L
I RIω L

I RIω L
I RIω

−LI RIv 03×1 03×1
−1 −1 −1

06×1 06×1 06×1


(75)
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2.4.3 Multiple-Plane Case

Multiple-Plane case refers to the cases that there are at least three intersecting planes with unparalleled plane
intersections in the state vector. We first modify our state vector as:

x =
[
x>I x>calibL

Gp>π1
Gp>π2

Gp>π3

]>
(76)

We have identified the following degenerate motions for the LiDAR-IMU calibration:

• Pure translation: if the system undergoes pure translation, the translation of rigid transformation be-
tween LiDAR-IMU will be unobservable. The unobservable directions can be written as:

Nπ
25:27 =



015×3
03

L
I RI1

GR
0

e>3
Gnπ1

GR>π1
e>3

Gnπ2
GR>π2

e>3
Gnπ3

GR>π3


(77)

where GRπi =
[
Gn⊥πi1

Gn⊥πi2
Gnπi

]
, i = {1, 2, 3} denotes the plane orientation.

• One-axis rotation: if the system undergoes one-axis rotation, with fixed rotation axis as Lk, the trans-
lation between LiDAR-IMU are not observable with unobservable directions as Nπ

28.

Nπ
28 =


03×1

G
I1

RI
LRLk

012×1
Lk

010×1

 (78)

• If the system undergoes motions with constant Iω&Iv or constant Iω&Ga, the IMU-LiDAR temporal
calibration will also be unobservable with unobservable directions as Nπ

29 or Nπ
30, respectively.

N
(π)
29:30=



06×1 06×1
03×1

GaI
06×1 06×1
L
I RIω L

I RIω
−LI RIv 03×1
−1 −1

09×1 09×1


(79)
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Table 1: Summary of Degenerate Motions for VINS Calibration

One Plane / Parallel Planes Unobservable
Pure Translation L

I R, LpI
1-axis Rotation LpI

Constant Iω and Iv tdI , LpI
Constant Iω and Ga tdI , LpI

Gω ‖ Gn and Gn ⊥ GvI tdI

Two Planes with Intersection Unobservable
Pure Translation LpI
1-axis Rotation LpI

Constant Iω and Iv tdI , LpI
Constant Iω and Ga tdI , LpI

Constant Iω and GvI ‖ bGnπ1cGnπ2 tdI

Multiple Planes Unobservable
Pure Translation LpI
1-axis Rotation LpI

Constant Iω and Iv tdI , LpI
Constant Iω and Ga tdI , LpI
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